

Chapter 0 Free-Response Practice Test

Directions: This practice test features free-response questions based on the content in Chapter 0: Preliminaries.

- 0.1:** Fundamental Skills in Algebra
- 0.2:** Numbers, Sets, and Absolute Values
- 0.3:** Coordinates and Geometry
- 0.4:** Defining a Function
- 0.5:** Linear Functions and Equations
- 0.6:** Modifying Functions; Inverse Functions
- 0.7:** Quadratics
- 0.8:** Trigonometry
- 0.9:** Exponents and Logarithms
- 0.10:** Sigma Notation

For each question, show your work. If you encounter difficulties with a question, then move on and return to it later. Follow these guidelines:

- Do not use a calculator of any kind. All of these problems are designed to contain simple numbers.
- Adhere to the time limit of 90 minutes.
- After you complete all the questions, score yourself according to the Solutions document. Note any topics that require revision.

Visit valscalc.com to access a free online calculus textbook and additional multiple-choice and free-response practice exams.

Preliminaries**Number of Questions—19****Suggested Time—1 hour 30 minutes****NO CALCULATOR****Scoring Chart**

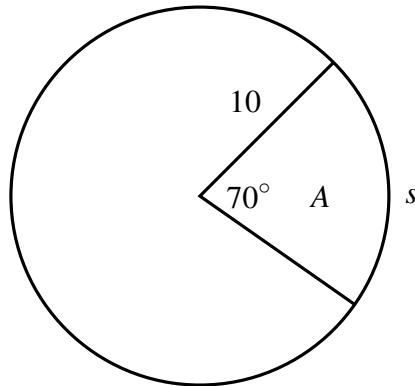
Section	Points Earned	Points Available
Short Questions I		27
Short Questions II		28
Question 17		15
Question 18		15
Question 19		15
TOTAL		100

Short Questions I

1. Determine the domain of $v(x) = \sqrt{\frac{1}{4}(x-8) + 1}$. (3 pts.)
2. Factor $27x^5 + 8x^2$ completely. (3 pts.)
3. Determine the solution interval to the inequality $5|x-4| < 20$. (3 pts.)

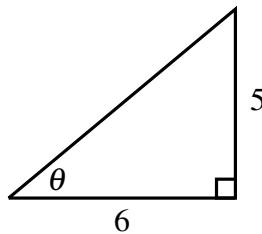
4. In the following circular sector, calculate the arc length s and the area A .

(3 pts.)



5. In the following triangle, obtain expressions for $\csc \theta$, $\cot \theta$, and θ .

(3 pts.)



6. A horizontal ellipse is centered at $(-5, 2)$ with width 10 and height 8. Write an equation for the ellipse in the xy -plane.

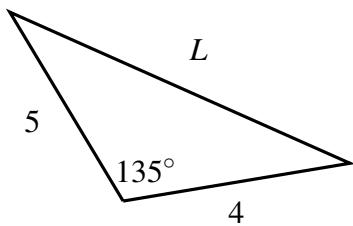
(3 pts.)

7. Determine the solution to the following system of equations: *(3 pts.)*

$$\begin{cases} 2x + y = 8 \\ x - 2y = 4. \end{cases}$$

8. For what value of c are the lines $4x + y = 2$ and $y = cx$ parallel? For what value are they perpendicular? Justify your reasoning. *(3 pts.)*

9. In the following triangle, determine the exact value of L . Evaluate any trigonometric expressions. (3 pts.)



Short Questions II

10. Rewrite $y = |4x - 8|$ as a piecewise function. (4 pts.)

11. Evaluate $\sum_{i=1}^8 (2i - 5)$. (4 pts.)

12. Rewrite the following expression as a single logarithm: (4 pts.)

$$\log_4 x + 2 \log_4 y - \frac{1}{3} \log_4 z,$$

where x , y , and z are positive.

13. Assuming all quantities are positive, simplify the expression (4 pts.)

$$\frac{(16x^4y^8z^2)^{1/2}}{(2xy^3z^{-4})^2}.$$

14. Determine the solutions to the equation $e^{2x} - 7e^x - 8 = 0$. Express your answers using the natural *(4 pts.)* logarithm.

15. If $\log_3 x + \log_3(x + 2) = 1$, then calculate x . *(4 pts.)*

16. To what integer does $\frac{\sin 4x}{(\cos^2 x - \sin^2 x) \sin 2x}$ simplify, assuming no division by 0 ? *(4 pts.)*

Long Questions

17. Consider the two rational functions $f(x) = \frac{x}{x+2}$ and $g(x) = \frac{4}{x^2-4}$.

(a) Find the domains of f and g . Write your answers in interval notation. (3 pts.)

(b) At what value of x are $f(x)$ and $g(x)$ both undefined? (2 pts.)

(c) Evaluate $\frac{f(x)}{g(x)}$ and $(f + g)(x)$. Write each answer as a single rational expression. (4 pts.)

(d) Evaluate $g(f(-3))$ and $g(g(0))$. (4 pts.)

(e) Is the function g even, odd, or neither? Justify your answer. (2 pts.)

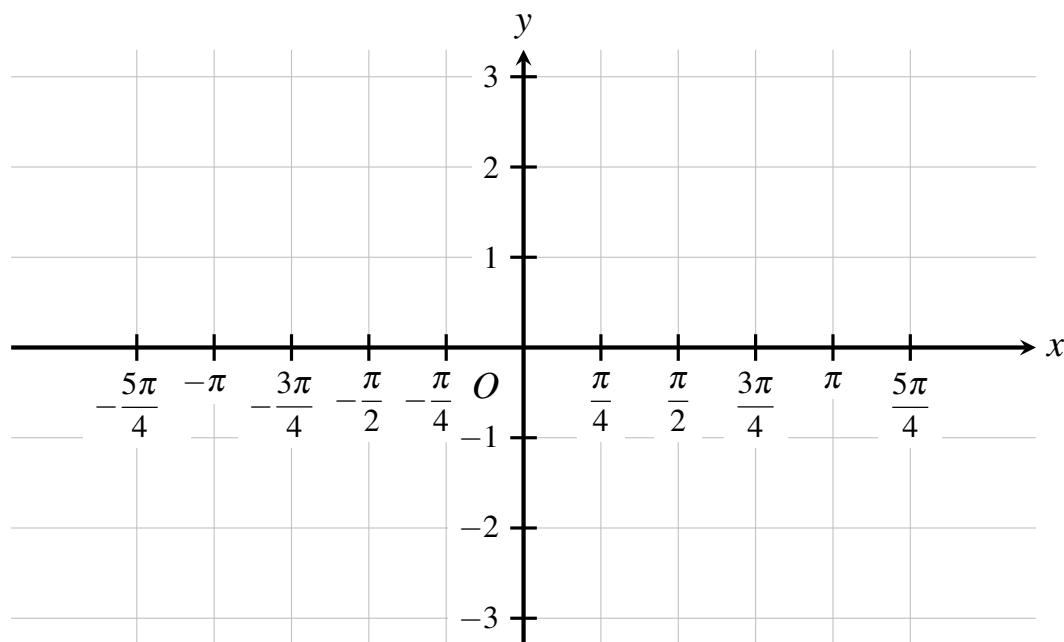
18. Consider the function $f(x) = -2 \sin 4x + 1$.

(a) Using interval notation, write the domain and range of f .

(2 pts.)

(b) Sketch the graph of $y = f(x)$ in the following figure.

(5 pts.)



(c) Determine $f^{-1}(x)$, the inverse function of $f(x)$. Assume that the domain of f is restricted to $\left[-\frac{\pi}{8}, \frac{\pi}{8}\right]$, an interval on which f is one-to-one. (4 pts.)

(d) Write the domain and range of $f^{-1}(x)$ using interval notation. (3 pts.)

(e) The graphs of $y = f(x)$ and $y = f^{-1}(x)$ are reflections of each other across a line ℓ that passes through the origin. What is the slope of ℓ ? (1 pt.)

19. Consider the family of functions $q(x) = 4x^2 + kx + 3$ for some constant k .

(a) For $k = -7$, find the x -intercepts and y -intercept of the graph of $y = q(x)$. (4 pts.)

(b) For $k = 8$, rewrite $q(x)$ in vertex form. What is the vertex, and does it correspond to the lowest or highest point on the graph of $y = q(x)$? (4 pts.)

(c) A new function is defined such that $r(x) = 4 - x$. For $k = 1$, determine the values of x such that $q(x) = r(x)$. (3 pts.)

(d) Determine the values of k for which $q(x)$ has no real zeros. (4 pts.)

This marks the end of the test. The solutions and scoring rubric begin on the next page.

Short Questions I (3 points each)

1. The argument of the square root must be nonnegative:

$$\frac{1}{4}(x-8)+1 \geq 0$$

$$\frac{x}{4} \geq 1$$

$$x \geq 4.$$

*

**

Thus, the domain is

$$[4, \infty)$$

*

2. First we extract the greatest common factor (GCF), which is x^2 , to get

$$x^2(27x^3 + 8).$$

*

The expression in parentheses is a sum of cubes: $(3x)^3 + 2^3$. Thus,

$$x^2(27x^3 + 8) = x^2(3x + 2)(9x^2 - 6x + 4).$$

**

3. Dividing both sides by 5 gives

$$|x - 4| < 4.$$

The inequality is satisfied by $(x - 4) < 4$ and $-(x - 4) < 4$. In the first case,

$$x - 4 < 4$$

$$x < 8.$$

**

In the second case,

$$-(x - 4) < 4$$

$$x - 4 > -4$$

$$x > 0.$$

*

Thus, the solution interval is

$$\{x \mid x > 0 \text{ and } x < 8\} = \boxed{(0, 8)}$$

*

4. The measure of the central angle in radians is

$$70^\circ \times \frac{\pi}{180^\circ} = \frac{7\pi}{18}.$$

*

The arc length is

$$s = 10 \left(\frac{7\pi}{18} \right) = \boxed{\frac{35\pi}{9}}$$

*

Additionally, the area is

$$A = \frac{1}{2} \left(\frac{7\pi}{18} \right) (10)^2 = \boxed{\frac{175\pi}{9}}$$

*

5. By the Pythagorean Theorem, the hypotenuse length is

$$\sqrt{6^2 + 5^2} = \sqrt{61}.$$

The cosecant is the ratio of the hypotenuse's length to the opposite side's length, so

$$\csc \theta = \boxed{\frac{\sqrt{61}}{5}}$$

*

The cotangent is the ratio of the adjacent side length to the opposite side length:

$$\cot \theta = \boxed{\frac{6}{5}}$$

*

The angle θ is given by

$$\theta = \tan^{-1} \left(\frac{5}{6} \right) = \boxed{\sin^{-1} \left(\frac{5}{\sqrt{61}} \right)}$$

*

(There are several correct answers using inverse trigonometric functions.)

6. The horizontal ellipse is modeled by the equation

$$\frac{(x+5)^2}{a^2} + \frac{(y-2)^2}{b^2} = 1.$$

*

The width is $2a = 10$, so $a = 5$. Additionally, the height is $2b = 8$, from which $b = 4$. Thus, an equation of the ellipse is

$$\frac{(x+5)^2}{25} + \frac{(y-2)^2}{16} = 1$$

**

7. It is easiest to solve this system of equations by elimination. For example, one method is to multiply the second equation ($x - 2y = 4$) by 2. The system then becomes

$$\begin{cases} 2x + y = 8 \\ 2x - 4y = 8. \end{cases}$$

Subtracting the second equation from the first equation yields

$$5y = 0 \implies y = 0.$$

*

Then by substituting back, we find

$$2x + 0 = 8 \implies x = 4.$$

*

The solution is therefore

$$(4, 0)$$

*

8. Solving for y in $4x + y = 2$ gives

$$y = -4x + 2.$$

*

Thus, this line has slope -4 . Conversely, the line $y = cx$ has slope c . Two lines are parallel if their slopes are equal, and two lines are perpendicular if their slopes are negative reciprocals of each other.

Accordingly, the answers are as follows:

parallel: $c = \boxed{-4}$ *

perpendicular: $c = \boxed{\frac{1}{4}}$ *

9. By the Law of Cosines,

$$L^2 = (4)^2 + (5)^2 - 2(4)(5)\cos 135^\circ.$$
 *

Since $\cos 135^\circ = -\frac{\sqrt{2}}{2}$, the preceding equation becomes

$$L^2 = 41 + 20\sqrt{2}.$$
 *

Taking the positive square root gives

$$L = \boxed{\sqrt{41 + 20\sqrt{2}}}$$
 *

Short Questions II (4 points each)

10. The expression $|4x - 8|$ is $(4x - 8)$ if $x \geq 2$ and $-(4x - 8)$ if $x < 2$. We note the following:

$$|4x - 8| = 4x - 8 \quad \text{if } x \geq 2, \quad *$$

$$|4x - 8| = -(4x - 8) \quad \text{if } x < 2. \quad *$$

Thus,

$$|4x - 8| = \begin{cases} 4x - 8 & x \geq 2 \\ -4x + 8 & x < 2 \end{cases} \quad \text{or} \quad |4x - 8| = \begin{cases} 4x - 8 & x > 2 \\ -4x + 8 & x \leq 2 \end{cases} \quad **$$

11. We first split the sum and then use summation properties, as follows:

$$\begin{aligned} \sum_{i=1}^8 (2i - 5) &= 2 \sum_{i=1}^8 i - \sum_{i=1}^8 5 \\ &= 2 \left(\frac{8(8+1)}{2} \right) - 8(5) \\ &= \boxed{32} \end{aligned} \quad * \quad **$$

12. We have

$$\begin{aligned} \log_4 x + 2 \log_4 y - \frac{1}{3} \log_4 z &= \log_4 x + \log_4 (y^2) - \log_4 (z^{1/3}) \\ &= \log_4 \left(\frac{xy^2}{z^{1/3}} \right) \\ &= \boxed{\log_4 \left(\frac{xy^2}{\sqrt[3]{z}} \right)} \end{aligned} \quad ** \quad **$$

13. The expression is

$$\begin{aligned}
 \frac{(16x^4y^8z^2)^{1/2}}{(2xy^3z^{-4})^2} &= \frac{\sqrt{16x^4y^8z^2}}{(2xy^3z^{-4})^2} \\
 &= \frac{4x^2y^4z}{4x^2y^6z^{-8}} \\
 &= \frac{1}{y^2z^{-9}} \\
 &= \boxed{\frac{z^9}{y^2}}
 \end{aligned}$$

**

**

14. The equation $e^{2x} - 7e^x - 8 = 0$ is quadratic in e^x since $e^{2x} = (e^x)^2$. Factoring yields

$$(e^x - 8)(e^x + 1) = 0.$$

**

Equating each factor to 0, we see

$$e^x - 8 = 0 \implies e^x = 8 \implies x = \ln 8.$$

*

The equation $e^x + 1 = 0$ has no solutions because the range of e^x is $(0, \infty)$. Hence, the only solution is

$$x = \boxed{\ln 8}$$

*

15. Both logarithms share the same base, so combining the sum produces

$$\log_3(x^2 + 2x) = 1.$$

*

Exponentiating both sides using the base 3 gives

$$3^{\log_3(x^2+2x)} = 3^1$$

$$x^2 + 2x = 3$$

$$x^2 + 2x - 3 = 0$$

$$(x+3)(x-1) = 0$$

$$\implies x = -3, x = 1.$$

But the domain of $\log_3 x + \log_3(x+2)$ is $(0, \infty)$ (to avoid nonpositive arguments), so $x = -3$ is extraneous. Instead, the only solution is

$$x = \boxed{1}$$

16. Because $\sin 4x = 2 \sin 2x \cos 2x$ and $\cos^2 x - \sin^2 x = \cos 2x$, we have

$$\frac{\sin 4x}{(\cos^2 x - \sin^2 x) \sin 2x} = \frac{2 \sin 2x \cos 2x}{(\cos^2 x - \sin^2 x) \sin 2x}$$

$$= \frac{2 \sin 2x \cos 2x}{\cos 2x \sin 2x}$$

$$= \boxed{2}$$

Long Questions (15 points each)

17. (a) In each function, we exclude x -values that result in a denominator of 0. For example, the denominator of $f(x)$ is 0 when $x = -2$, so the domain is all x *excluding* -2 —namely,

$$\{x \mid x \neq -2\} = \boxed{(-\infty, -2) \cup (-2, \infty)}$$

*

The denominator of $g(x)$ is 0 when

$$x^2 - 4 = 0$$

$$(x+2)(x-2) = 0$$

$$\implies x = -2, 2.$$

**

Hence, the domain of $g(x)$ is

$$\{x \mid x \neq -2 \text{ and } x \neq 2\} = \boxed{(-\infty, -2) \cup (-2, 2) \cup (2, \infty)}$$

*

(b) Both domains exclude the point

$$x = \boxed{-2}$$

**

Thus, both functions are undefined at $x = -2$.

(c) The quotient is

$$\begin{aligned} \frac{f(x)}{g(x)} &= \frac{x/(x+2)}{4/(x^2-4)} \\ &= \frac{x}{x+2} \cdot \frac{x^2-4}{4} \\ &= \frac{x}{x+2} \cdot \frac{(x+2)(x-2)}{4} \\ &= \frac{x(x+2)(x-2)}{4(x+2)} \\ &= \boxed{\frac{x(x-2)}{4}} \end{aligned}$$

*

**

where $x \neq -2, 2$. Conversely, to compute the sum we attain a common denominator. The easiest way

to do so is to multiply the numerator and denominator of $f(x)$ each by $(x - 2)$. Doing so shows

$$\begin{aligned}
 (f+g)(x) &= \frac{x}{x+2} + \frac{4}{x^2-4} \\
 &= \frac{x}{x+2} \cdot \frac{x-2}{x-2} + \frac{4}{x^2-4} \\
 &= \frac{x(x-2)}{x^2-4} + \frac{4}{x^2-4} \\
 &= \boxed{\frac{x(x-2)+4}{x^2-4}}
 \end{aligned}$$

(d) Note that

$$f(-3) = \frac{(-3)}{(-3)+2} = 3.$$

Thus,

$$g(f(-3)) = g(3) = \frac{4}{(3)^2-4} = \boxed{\frac{4}{5}}$$

Likewise,

$$g(0) = \frac{4}{(0)^2-4} = -1.$$

Accordingly,

$$g(g(0)) = g(-1) = \frac{4}{(-1)^2-4} = \boxed{-\frac{4}{3}}$$

(e) Observe that

$$g(-x) = \frac{4}{(-x)^2-4} = \underbrace{\frac{4}{x^2-4}}_{g(x)}.$$

Because $g(-x) = g(x)$,

g is even

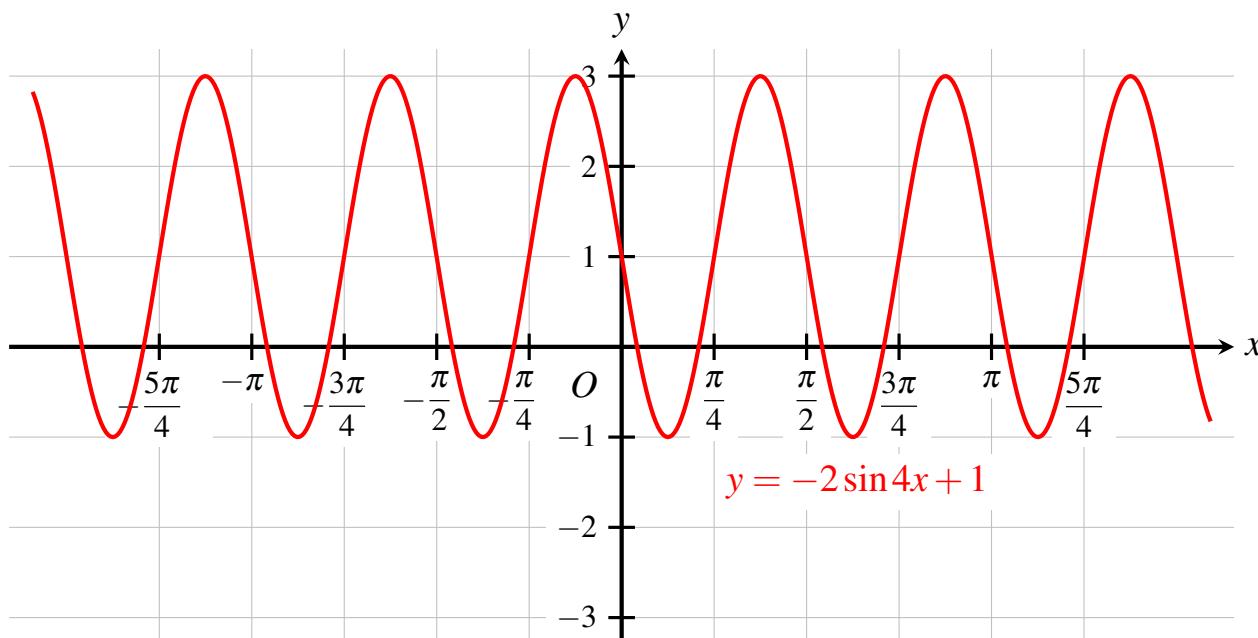
18. (a) The domain of any sinusoidal function is $(-\infty, \infty)$. The range of sine is $[-1, 1]$; but the graph of $f(x) = -2 \sin 4x + 1$ is dilated vertically by a factor of 2 and shifted up 1, so the range is $[-1, 3]$. So the answers are as follows:

domain: $(-\infty, \infty)$, *

range: $[-1, 3]$. *

(b) The graph has the following features:

- A y -intercept of $(0, 1)$
- A midline of $y = 1$
- An amplitude of 2
- A period of $\frac{\pi}{2}$
- Decreasing at $x = 0$



(c) If f is restricted to the domain $[-\frac{\pi}{8}, \frac{\pi}{8}]$, then we solve for the inverse function by replacing $f(x)$

with y , swapping x and y , and solving for y , as follows:

$$x = -2 \sin 4y + 1$$

$$\sin 4y = \frac{1}{2}(1 - x)$$

$$4y = \sin^{-1} \left[\frac{1}{2}(1 - x) \right]$$

$$y = \frac{1}{4} \sin^{-1} \left[\frac{1}{2}(1 - x) \right].$$

Thus, the inverse function is

$$f^{-1}(x) = \boxed{\frac{1}{4} \sin^{-1} \left[\frac{1}{2}(1 - x) \right]}$$

(d) The range of $f(x) = -2 \sin 4x + 1$ is $[-1, 3]$, so for $f^{-1}(x)$,

$$\text{domain: } \boxed{[-1, 3]}$$

In addition, the inverse function exists when the domain of f is $\left[-\frac{\pi}{8}, \frac{\pi}{8}\right]$, so for $f^{-1}(x)$,

$$\text{range: } \boxed{\left[-\frac{\pi}{8}, \frac{\pi}{8}\right]}$$

(e) A function f and its inverse f^{-1} are reflections of each other across the line $y = x$. Thus, the slope of ℓ is

$$\boxed{1}$$

19. (a) For $q(x) = 4x^2 - 7x + 3$, the y -intercept is found by substituting $x = 0$:

$$q(0) = 4(0)^2 - 7(0) + 3 = 3.$$

Thus, the y -intercept is

$$\boxed{(0, 3)}$$

*

To find the x -intercepts, we solve $q(x) = 0$ —that is, $4x^2 - 7x + 3 = 0$. To factor the left side, we note that two numbers whose sum is -7 and whose product is $4 \times 3 = 12$ are -4 and -3 . Thus, we rewrite $-7x$ as $-4x - 3x$ and factor by grouping to attain

$$4x^2 - 4x - 3x + 3 = 0$$

*

$$4x(x - 1) - 3(x - 1) = 0$$

*

$$(4x - 3)(x - 1) = 0$$

$$\implies x = \frac{3}{4}, 1.$$

Thus, the x -intercepts are

$$\boxed{\left(\frac{3}{4}, 0\right)} \quad \text{and} \quad \boxed{(1, 0)}$$

*

(b) In $q(x) = 4x^2 + 8x + 3$, factoring the leading coefficient (4) gives

$$q(x) = 4 \left(x^2 + 2x + \frac{3}{4} \right).$$

To complete the square, we add and subtract $(2/1)^2 = 1$ in the parentheses, as follows:

$$\begin{aligned} q(x) &= 4 \left(x^2 + 2x + 1 - 1 + \frac{3}{4} \right) \\ &= 4 \left[(x + 1)^2 - \frac{1}{4} \right] \\ &= \boxed{4(x + 1)^2 - 1} \end{aligned}$$

*

*

The vertex is

$$\boxed{(-1, -1)}$$

*

Because the leading coefficient of q is positive, the parabola opens upward. Thus,

the vertex is the lowest point on the graph of $y = q(x)$.

*

(c) We seek the solutions to

$$4x^2 + x + 3 = 4 - x.$$

Moving all terms to the left gives

$$4x^2 + 2x - 1 = 0.$$

Factoring fails, so we use the Quadratic Formula. With $a = 4$, $b = 2$, and $c = -1$, we have

$$\begin{aligned} x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ &= \frac{-2 \pm \sqrt{(2)^2 - 4(4)(-1)}}{2(4)} \\ &= \boxed{\frac{-2 \pm \sqrt{20}}{8}} \end{aligned}$$

**

Because $\sqrt{20} = \sqrt{4 \cdot 5} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}$, the answer may be simplified to

$$x = \frac{-2 \pm 2\sqrt{5}}{8} = \frac{-1 \pm \sqrt{5}}{4}.$$

(d) With $a = 4$, $b = k$, and $c = 3$, the discriminant is

$$\Delta = b^2 - 4ac$$

$$= k^2 - 4(4)(3)$$

*

$$= k^2 - 48.$$

*

The function $q(x)$ has no real zeros if $\Delta < 0$. We see

$$k^2 - 48 = 0 \implies k = \pm\sqrt{48}.$$

*

For $-\sqrt{48} < k < \sqrt{48}$, we see $k^2 - 48 < 0$. Thus, q has no real zeros for

$$\boxed{-\sqrt{48} < k < \sqrt{48}}$$

**